Pancreatitis

Pathophysiology ACUTE PANCREATITIS

- **BILIARY OBSTRUCTION**
- Duct obstruction in the bile duct, pancreatic duct, or both.
- Increasing pressure
- Unregulated activation of digestive enzymes.
- Inflammation
 - TNF
 - IL-1
- Edema
 - Increased vascular permeability due to inflammation

Unregulated activation of digestive enzymes

Insult

•

(supramaximal secretagogue stimulation, bile duct obstruction, etc.)

Block in secretion

Co-localization of zymogens and lysosomes

Activation of trypsinogen by cathepsin B

Activation of other zymogens

Acinar cell injury

Release of chemokines and cytokines

Infiltration by leukocytes

Increased cytokine release

Multiorgan dysfunction

Death Recovery

Pathophysiology ACUTE PANCREATITIS

• ALCOHOL

• Most common etiology of chronic pancreatitis and most acute pancreatitis patients have underlying chronic disease.

What is considered one serving of alcohol?

• On drink contains about 14g pure alcohol

Mini Alcohol Lesson

• ADH: Alcohol dehydrogenase

- Can only function until a certain limit.
- MOES: microsomal ethanol oxidizing system

Pathophysiology ACUTE PANCREATITIS

• ALCOHOL

- Sensitizes cells to CCK stimulation
- Zymogen activation

Pathophysiology CHRONIC PANCREATITIS

- Permanent and irreversible damage to the pancreas
- Chronic inflammation and fibrosis
- Destruction of exocrine and endocrine tissue.

Pathophysiology CHRONIC PANCREATITS

- **BILIARY OBSTRUCTION**
- Stricture of the main pancreatic duct as a consequence of long term obstruction.
- Benign strictures can develop after severe acute pancreatitis attacks.
- Trauma to the pancreas lead to strictures.
- Recurrent acute pancreatitis
- Leads to necrosis and pseudocysts
- Leads to exocrine and endocrine insufficiency

Pathophysiology CHRONIC PANCREATITS

- ALCOHOL
- Sensitizes cells to CCK stimulation
- Zymogen activation
- Alcohol metabolites stimulate pancreatic stellate cells.
- Stellate cells fibrosis

Diagnosis

- Digestive enzymes
 - Amylase
 - Lipase

- Ultrasounds
- CT scan
- ERCP

Amylase

- Pancreas accounts for 40-45% of serum amylase.
- Rises within 6 to 12 hours
- Cleared quickly from the blood
- Not 100% sensitive or specific
- Normal range: 25-125 U/L
- Use with lipase to diagnose pancreatitis

Lipase

- Greater specificity for pancreatitis
- Rises within 4-8 hours
- Remains elevated for longer period of time
- Normal range: 0-110 U/L

Ultrasound

•

• Search for gallstones, dilation of the bile duct, and ascites.

Computed Tomography

- Most important imagine test for diagnosis of pancreatitis.
- Diffuse or segmental enlargement of pancreas
- Fluid collection
- Pancreatic inflammation
- Pancreatic necrosis
- Help diagnose disease severity

Pancreatic CT

Fig. 1 Computed tomography demonstrating infected pancreatic necrosis, with abscess and gas bubbles (arrow)

ERCP

- Endoscopic retrograde cholangiopancreatography
- Scope placed down the throat and into the small intestine where the pancreas and bile duct can be visualized.
- Used when it is suspected a person's bile or pancreatic duct may be narrowed or blocked due to:
 - Tumors, gallstones, inflammation, infections, scarring, pseudocysts.

Prognosis

• Prognosis can be determine by using a clinical scoring systems.

Ranson's Score

- Ranson Criteria
 - 11 signs of prognostic significance during the first 48 hours.
 - Scores <2 mortality = 2.5%
 - Scores >3 mortality = 62%
 - The higher the Ranson's score the higher the incidence of complications, necrosis, and infection.

Ranson's Criteria for Severity

At Admission
Age >55 yr
WBC >16,000/mL
LDH >350 IU/L
AST >250 IU/L
Glucose >200 mg/dL
At 48 Hours
Hematocrit decrease >10%
BUN increase >5 mg/dL
Calcium <8 mg/dL
Pao ₂ <60 mm Hg
Base deficit >4 mg/dL
Fluid sequestration >6 L

APACHE-II Score

- Predicts severity.
- Assigns points for 12 physiologic variables, age, and chronic health.
- 12 variables: temperature, heart rate, respiratory rate, mean arterial blood pressure, oxygenation, arterial pH, serum potassium, sodium, and creatinine, hematocrit, WBC, and glasgow coma scale.
- <9 = higher survival rate
- >13 = high likelihood of dying

Case Study NUTRITION ASSESSMENT

Anthropometric

- Male, 29
- 5'11", 245 lbs
- BMI 34.2
- IBW 172, 142%
- NPO

Biochemical

- BUN 30 (8-18)
- Creatinine serum 1.6 (.6-1.2)
- Osmolality 303 (285-295)
- Bilirubin total 1.9 (<1.5)
- Bilirubin direct .9 (<.3)
- Alkaline phosphatase 256 (30-120)
- ALT 38 (4-36)
- AST 56 (0-35)
- CPK 219 (55-170)
- Lactate dehydrogenase 402 (208-378)
- Lipase 980 (0-110)
- Amylase 543 (25-125)
- CRP 18 (<1)
- Cholesterol 210 (120-199)
- Triglycerides 285 (40-160)
- WBC 19.8 (4.8-11.8)
- Neutrophil % 90 (50-70)

Case Study NUTRITION ASSESSMENT

<u>Clinical</u>

- Abdominal pain
- N/V
- Depression
- Dry skin
- Abdomen tender, guarding, rebound
- Medications:
 - Imipenen
 - Pepcid
 - Meperidine
 - Ondansetron
 - Colace
 - Milk of Magnesia
 - Ativan

<u>Dietary</u>

- Six pack of beer, 4-5 shots of bourbon daily; mixed drinks and wine on weekends
- Typical Intake
 - Breakfast: coffee and toast
 - Lunch: Sub sandwich or pizz
 - Dinner: Eats out
 - Hasn't eaten much over past three days because of pain, N/V
 - Current diet order NPO with post pyloric feeding tube

<u>Genetics</u>

- Mom with breast cancer
- Dad with HTN

Case Study NUTRITION DIAGNOSIS

PES Statement

Inadequate oral intake related to nausea and vomiting as evidenced by patient statement of poor appetite due to abdominal pain.

Case Study PLAN

- NCM (25-35 kcal/kg/day)
 2159-3022 REE
- NCM Protein 1.2-1.5 g/kg/day
 - 133-167 g/day PRO
- 1900-2400 mL
- Mild-moderate: NPO
- Severe: Enteral feeding
- Recommend patient limit alcohol consumption to prevent future attacks

Sample Diet

Breakfast: Honey Nut Cheerios Skim lactose-free milk Small banana

•

AM Snack: Greek yogurt with granola

Lunch: Ham sandwich with lettuce, tomato, 2 tsp light mayo Apple Baby carrots

PM Snack: Low fat cheese and crackers

Dinner: Grilled chicken White Rice Steamed Broccoli

HS Snack (or dessert): Nonfat frozen yogurt Sliced strawberries 2200 Kcals 15% of Calories from fat 138 g Protein