Nutrition Support Calculations

NDFS 356
WINTER 2013
35 Points

1. Determine the following for Ensure at $68 \mathrm{ml} /$ hour (Note: when working with volumes of formula for enteral formula, it is expressed in total volume $/ \mathrm{ml}$ not as cans or ounces. For example: 1200 ml 's, not 5 cans)
a. Total volume: $1,632 \mathrm{ml}$
b. Total calories: $1,714 \mathrm{kcals}(1.05 \mathrm{cal} / \mathrm{ml} \times 1,632 \mathrm{ml})$
c. Protein (grams): 62 g
2. Determine the following for Jevity 1.2 at $120 \mathrm{ml} /$ hour:
a. Total volume (ml): $2,880 \mathrm{ml}$
b. Total calories: $3,456 \mathrm{kcals}(2,880 \mathrm{ml} \mathrm{x} 1.2 \mathrm{cal} / \mathrm{ml})$
c. Total protein (g): 160 g
d. Free water (ml): $2,333 \mathrm{ml}(81 \% \times 2880 \mathrm{ml})$
e. Fiber (g): 52g
3. How much Perative would need to be delivered to provide about 2,500 calories and about 130 protein?

Total volume in ml's: $1,923 \mathrm{ml}$
4. Calculate the following for Procalamine at $100 \mathrm{ml} \times 24$ hours. $2,400 \mathrm{ml}$
a. Protein (grams): 70g
b. Total calories: 592 kcals
c. Total non-protein calories (NPC): 312 kcals
5. Calculate how much Impact is necessary to provide 80 grams of protein. What is the total volume, calories and free fluid that it would provide?
a. Total volume (ml): $1,429 \mathrm{ml}$
b. Total calories: $1,429 \mathrm{kcals}$
c. Free fluid (water) $(\mathrm{ml}): 1,215 \mathrm{ml}$
6. How many cans of Nutren 2.0 are necessary to provide 1250 calories? How much protein does it provide? How much free fluid? (when supplements are consumed PO, they are usually expressed in cans/day)
a. \# of cans: 2.5 cans/day
b. Protein (g): 50 g
c. Free Fluid: 438 ml
7. Determine the following for someone who consumed 3 and one-half cans of Boost.
a. Calories: 840kcals
b. Protein (g): 35 g
8. How much of the following nutrients would be provided in 2 Glucerna meals bars?
a. Kcals: 440kcals
b. Protein: 20 g
c. Overall \% of DV: 40%
9. For the following Standard TPN solution, calculate the requested information:

2800 ml of $50 \% \mathrm{CHO}$ and 8.5% AA.
a. Protein (grams): 119 g
b. Total NPC: 2,380 kcals
c. Total calories: 2,856 kcals
10. Calculate the nutritional provisions in a standard solution of $2,450 \mathrm{ml} 50 \% \mathrm{CHO}, 10 \%$ protein, and 10% lipids (500 ml 's) QOD
a. \quad Protein (grams): 122.5 g
b. Total NPC: 2,358 kcals
c. Total calories: $2,848 \mathrm{kcals}$
11. Calculate the following: $1,200 \mathrm{ml}$ of $70 \% \mathrm{CHO} ; 1,000 \mathrm{ml}$ of 8.5% protein; and 20% lipids (in 500 ml bag) given QOD to a 74 kg person.
a. Protein (grams): 85g
b. Total NPC (average/day): 3,356 kcals
c. Total calories: 3,696 kcals
d. Fat load: 0.76
e. CHO load: 7.88
f. What is the max amount of CHO for this person: 746 g
12. MC is starting on TPN (wt. 61 kg). You determined his needs to be $2,650 \mathrm{kcals} /$ day and
protein needs at 91 grams. He will get 10% lipids 3 times/week. Write a TPN order using 60% dextrose and 8.5% AA (include protein calories) to meet his needs:
a. Volume CHO (60%): $1,005 \mathrm{ml}$
b. Volume Pro (8.5\%): $1,071 \mathrm{ml}$
c. Average daily lipid calories: 236 kcals
d. Fat load: 0.34
e. CHO load: 6.9
13. Design a TPN formula to provide 1840 calories and 65 grams of protein for a 59 kg person. Remember the minimum lipid requirements. Make sure the person receives adequate fluid.

	$\%$	Volume (ml)			
CHO	40%	988 ml			
Protein	8.5%	765 ml			
Fat	10%	Volume: 500 ml	Frequency: 3xweek		
Fat load	0.37				
CHO load	4.6				

14. JT is receiving both Procalamine and Jevity 1.0. He is tolerating Jevity at only 40 $\mathrm{ml} /$ hour which doesn't meet his protein needs of 90 grams. How much Procalamine does he need and at what rate over 24 hours to meet his total protein needs?
a. Procalamine (grams protein): 48 g
b. Procalamine (volume): $1,655 \mathrm{ml}$
c. Rate of Procalamine: $69 \mathrm{ml} / \mathrm{hr}$
d. Kcals provided by Jevity: $1,017 \mathrm{kcals}(960 \mathrm{ml} \times 1.06 \mathrm{cal} / \mathrm{ml})$
15. Find a product that will provide 1,200 calories and >60 grams pro in less than $1,000 \mathrm{ml}$ and osmolality less than 600 mOsm . How much must be delivered?
Vital AF 1.2 Cal: 1200 kcals, 1000 ml , 75 g protein, 435 mOsm
16. Calculate the following for Jevity 1.5 half strength (diluted in equal water-i.e. $1 / 2$ of the total volume is added water) at $83 \mathrm{ml} /$ hour over 22 hours.
a. Calories: 1,370 kcals
b. Protein: 58 g
c. Total volume: 1826 ml
d. Free fluid from Jevity 1.5: 694 ml
e. Total free fluid provided (added water plus Jevity free fluid): $1,607 \mathrm{ml}$
17. Design a tailor-made formula providing 112 grams protein, 2,875 total calories, and 3,100 ml's total fluid ($\pm 100 \mathrm{ml}$'s) for an 89 kg person. Complete the table below.

	Initial Stock concentration	Total grams
Amino acids	8.5%	Total volume
Dextrose	50%	112 g
Fat	10%	470 g
CHO load	3.7	750 ml
Fat load	0.8	750 ml
Final AA concentration	3%	
Final dextrose concentration	15%	
Total final volume	$3,008 \mathrm{ml}$	

